

8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE Firenze - Auditorium CTO - A.O.U. Careggi, 22-23 giugno 2023

Alterazioni dello Splicing nelle MDS a basso rischio

Emiliano Fabiani, PhD

Disclosures of Emiliano Fabiani

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other	

Molecular mechanisms that can drive aberrant splicing in hematologic malignancies

Mutational landscape of MDS

- About 95% of patients with MDS have at least one mutation (t-NGS 30-80 genes)
- Genes belonging to the splicing machinery (SF3B1, SRSF2, U2AF1 and ZRSR2) are the most frequently mutated genes in MDS (50-60%)
- SF3B1 is the most frequently mutated gene in MDS (25-35%)

Data are from Papaemmanuil et al., Blood 2013, Haferlach et al., Leukemia 2014 and Kennedy et al., JCO 2017.

Survival between clonal and subclonal mutations

- No significant difference in survival between clonal and subclonal mutations for SRSF2, U2AF1 and ZRSR2
- The worse survival associated with subclonal SF3B1 suggests it belongs to a separate bystander clone, with a main clone driven by other mutations

Bersanelli et al., JCO 2021 and Bernard et al., NEJM Evidence 2022

Impact of specific splicing mutations in LR-MDS

SF3B1^{mut} Group 6

SRSF2^{mut} Group 5

Bersanelli et al., JCO 2021

Splicing machinery

Splicing machinery

Beauty of Science: https://youtu.be/OuAGeQYjfus

Alternative splicing events

SIES BAU DU LI DO SO

Trends in Ecology & Evolution

Study cohort

MLL: Munich Leukemia Laboratory

Patients' selection according to IPSS-R and splicing factors mutation profile

Gene	Target region (exon)	Gene	Target region (exon)	Gene	Target region (exon)			
ABL	4-9	FLT3	13-15 and 20	PTPN11	3,7-13			
ASXL1	9,11,12	HRAS	2,3	RUNX1	all			
BRAF	15	IDH1	4	SETBP1	4			
CALR	9	IDH2	4	SF3B1	10-16			
CBL	8,9	JAK2	all	SRSF2	1			
CEBPA	all	KIT	2,8-11, 13,17 and18	TET2	all			
CSF3R	all	KRAS	2,3	TP53	all			
DNMT3A	all	MPL	10	U2AF1	2,6			
ETV6	all	NPM1	10,11	WT1	6-10			
EZH2	all	NRAS	2,3	ZRSR2	all			

Coverage	1000X
*VAF	> 1%

WGS analysis: mutation types and co-mutations pattern

Type of mutations in SF3B1 gene P370 6.25% H662 6.25% 6.25% K666 6.25% 6.25% K700 6.25 G740 D781 E783 62.5%

Fabiani et al., Unpublished data

SRSF2 gene

Bersanelli et al., JCO 2021

Exclusion criteria

ZRSR2 mutated patients

SF co-mutated patients

UPN2 SI	F3B1 E738K	33,6	SRSF2 P95H	21
UPN13 SI	F3B1 P370T	4,5	SRSF2 P95H	31,4
UP16 U2	2AF1 Q157P	39,1	ZRSR2 K405Rfs*	74,2
UPN17 U2	2AF1 Q157P	11,7	ZRSR2 W340*	30
UPN27 SI	F3B1 K700E	42,1	SRSF2 R94H100del	29,9

Differentially expressed genes by RNA-Seq analysis

p-adj < 0,05; Log2 FC ≥2 e log2 FC≤- 2

- Transforming growth factor beta (TGF-β) signaling pathway is key to hematopoiesis regulation
- Up-regulation of TGF-β signaling has been proposed as one of the causes of ineffective hematopoiesis

Verma A, et al. J Clin Invest. 2020; Zhou L, et al. Blood 2008

Ligand trap

- It binds to GDF11 and other members of the TGF-B superfamily, inhibiting their binding to the activin IIB receptor.
- Thus, it prevents the signal activation of SMAD2 and SMAD3.

Verma A, et al. J Clin Invest. 2020; Zhou L, et al. Blood 2008

Alternative splicing events

SIES BAU DU LI DO SO

Trends in Ecology & Evolution

Percentage of genes subjected to AS regulation

%)

s

◄

2

۰

σ

5

⊐

s

Gen

10

EV MIX: >1 AS events

P VALUE

FDR

SF3B1-K700E MDS SRSF2 MDS **U2AF1 MDS** P value FDR FDR P value FDR P value 27% **3813 GENES 6490 GENES 5906 GENES 3053 GENES** 5494 GENES **1923 GENES**

A3SS A5SS RI MXE SE EV MIX

Overlap of genes/events undergoing AS regulation in SF3B1-K700E vs SRSF2-P95 mutated patients

Red dashed circle = AS regulated in the same direction; **Blue dashed circle** = AS regulated in opposite direction

Overlap of genes/events undergoing AS regulation in SRSF2-P95 vs U2AF1 and SF3B1-K700E vs U2AF1 mutated patients

AS regulation in SF3B1-K700E vs U2AF1

TGFBR2, transforming growth factor, beta receptor II

- The protein encoded by this gene is a transmembrane protein that has a protein kinase domain, forms a heterodimeric complex with TGFbeta receptor type-1, and binds TGF-beta
- This receptor/ligand complex phosphorylates proteins, which then enter the nucleus and regulate the transcription of genes related to cell proliferation, cell cycle arrest and tumorigenesis
- Deregulation of TGF-β pathway can be overcome by targeting the TGF-β receptors with ligand antibodies, ligand traps or by inhibiting TGF-β receptors using specific kinase inhibitors or by knocking out the TGF receptor genes with antisense oligonucleotides (e.g., AP11014 and AP15012)

The heme biosynthesis pathway is altered in LR-MDS SF3B1 and SRSF2 mutated patients

SRSF2- P95H/L/A

U2AF1-S34 and -Q157

COASY deregulation impacts CoA synthesis and erythroid differentiation

Philippe et al. Marseille, MDS 2023

Annotated event (PubMed)

Unannotated events

Human (GRCh38/hg38) 🜔	ch	r17			٢	chr17:42,56	65,370-42	,567,475	Go	† •	• 🏟	🔳 🗶			Ξ			+
		p13.2	p13.1	1	12	p11.2	p11.1	q11.2	q12	q21.1	q21.31	q21.33	q22	q23.1	q23.3	q24.2	q24.3	q25.1	q25.3
	◄		42.565.600 t	qc	42.565.80	00 bp	42.566.000 bp 	42.566 	i.200 bp	2.107 42.566.400	bр — 4 bp 4	12.566.600 bp	42.566.8 	00 bp	42.567.00	0 bp	42.567 .:	200 bp	42.567.400 bp
MDS-WT	[0 - 1,02]					1													
MDS-SF3B1mut	[0 - 2,66]			L				_											
MDS-SRSF2mut	[0 - 0,73]					1													

- RNA-Seq analysis showed a strong difference in gene expression profile between LR-MDS and nonhematological patients
- MDS with SF3B1^{K700E} showed a distinctive transcriptomic profile, while SRSF2 and U2AF1 mutated patients showed a more heterogeneous one
- In splicing factors mutated patients the alternative splicing events seem to be prominent compared to gene expression profile
- TGF-β pathway was identified as one of the biological pathways differently expressed in SF3B1^{K700E} patients, suggesting its potential role in the pathogenesis of MDS
- Recent findings suggest the involvement of COASY enzyme and genes belonging to HEME metabolism in erythroid differentiation
- Vitamin B5 and succinyl-CoA may improve ineffective erythropoiesis in SF3B1 mutated MDS (Philippe et al., 2023)

Grazie a tutti voi per l'attenzione

Università di Roma Tor Vergata Dipartimento di Biomedicina e Prevenzione

Laboratorio di Oncoematologia

Prof.ssa Maria Teresa Voso Dr Hajro Hajrullaj Dr Antonio Cristiano Dr.ssa Giorgia Silvestrini Dr Angelo Onorato Dr.ssa Elisa Galossi Dr.ssa Giulia Falconi

Anatomia Umana

Prof.ssa Pamela Bielli Dr Marco Pieraccioli Dr.ssa Martina Valenzuela

Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth

Prof Claudio Sette

MLL Munich Leukemia Laboratory

> Prof Torsten Haferlach Dr Niroshan Nadarajah Dr Stephan Hutter

8° WORKSHOP

In Ematologia Traslazionale Della Società Italiana di Ematologia Sperimentale

